INTERDEPENDENCE OF FINTECH INNOVATIONS, FINANCIAL, CYBERNETIC CRIMES AND LEGALIZATION OF CRIMINAL INCOME MEDIATED BY FINANCE INSTITUTIONS

O.Kuzmenko

Sumy State University,
Sumy, Ukraine

T. Dotsenko

Sumy Regional Department of Oschadbank JSC,
Sumy, Ukraine

S. Mynenko

Sumy State University,
Sumy, Ukraine

E. Shramko

Sumy State University,
Sumy, Ukraine

Pages: 195-207

Original language: Ukrainian

DOI: 10.21272/1817-9215.2021.1-23

Summary:

Current trends in Ukrainian society, the decline of economic development and, on the other hand, digitalization, development of financial services and innovation lead to a review and rethinking of the causes and consequences of criminal activity in the financial and economic sphere. FinTech innovations provide the latest tools to protect financial transactions, and, as the range of services expands, provide more targets for cybercriminals. The goals of cybercriminals, in turn, are often financial in nature, as the goals of criminals, for example, are not only to obtain confidential information, but also to use it for their own benefit or to meet the needs of a third party. Funds obtained illegally should be legalized for their quiet further use. All these processes to some extent depend on the available financial infrastructure - the existing financial organizations-service providers.

The purpose of this study is to determine the relationship between FinTech innovation, financial crime, cybercrime and money laundering by building an economic and mathematical model, taking into account the functioning of financial institutions as major intermediaries in the financial services market.

The method of structural modeling of interrelations between processes was chosen as the basic for research. Missed values ​​were predicted using a simple mean, the results were generated by analysis, synthesis, comparison and logical generalization. STATISTICA statistical software was used for simulation.

The study found that the development of FinTech will lead to a reduction in financial offenses. If the number of cybercrimes and the number of crimes for money laundering increase, so will the number of financial crimes, but the impact of money laundering is stronger. The growth of fintech innovation will lead to an increase in cybercrime.

With formalized linkages between these processes, law enforcement and government regulators will be able to better plan and manage the development of fintech innovation, risk-based digitalisation of the economy, and additional security measures.

Keywords:

FinTech, digitalization, cybercrime, financial crimes, counteraction to money laundering, structural modeling.

Reference:
  1. Achim M. V., Borlea S. N., & Văidean V. L. (2021). Does technology matter for combating economic and financial crime? A panel data study.Technological and Economic Development of Economy, 27(1), 223-261. doi:10.3846/tede.2021.13977.
  2. Andros, S., Akimova, L., & Butkevich, O. (2020). Innovations in Management of Banks Deposit Portfolio: Structure of Customer Deposit. Marketing and Management of Innovations, 2, 206-220. http://doi.org/10.21272/mmi.2020.2-15
  3. Araujo, Ricardo. (2008). Assessing the efficiency of the anti-money laundering regulation: an incentive-based approach. Journal of Money Laundering Control. 11. 67-75. 10.1108/13685200810844505.
  4. Barraclough, P. A., Fehringer, G., & Woodward, J. (2021). Intelligent cyber-phishing detection for online.Computers and Security, 104 doi:10.1016/j.cose.2020.102123
  5. Belen Suarez Lopez, David Issó García, Antonio Vargas Alcaide (2019). Blockchain Technology Facing Socioeconomic Challenges. Promise versus Probability. SocioEconomic Challenges, 3(4), 13-24. http://doi.org/10.21272/sec.3(4).13-24.2019.
  6. Bonaventura M., Aiello, L. M., Quercia D., & Latora V. (2021). Predicting urban innovation from the US workforce mobility network. Humanities and Social Sciences Communications, 8(1) doi:10.1057/s41599-020-00685-7.
  7. Bukhtiarova, A., Semenog, A., Razinkova, M., Nebaba, N & Haber, A.J. (2020). Assessment of financial monitoring efficiency in the banking system of Ukraine. Banks and Bank Systems, 15(1), 98-106. doi:10.21511/bbs.15(1).2020.10
  8. Buriak, An. & Artemenko, Al. (2018). Reputation risk in banking: application for Ukraine. Financial Markets, Institutions and Risks, 2(2), 100-110. DOI: 10.21272/fmir.2(2).100-110.2018
  9. Chakravarty N., Priyanka, Singh J., & Singh R. P. (2021). A potential type-II L-asparaginase from marine isolate bacillus australimaris NJB19: Statistical optimization, in silico analysis and structural modeling.International Journal of Biological Macromolecules, 174, 527-539. doi:10.1016/j.ijbiomac.2021.01.130.
  10. Chen T. -., & Chang R. -. (2021). Using machine learning to evaluate the influence of FinTech patents: The case of taiwan's financial industry.Journal of Computational and Applied Mathematics, 390 doi:10.1016/j.cam.2020.113215.
  11. Demkiv, Yu.M. (2018). The ISO 9001 International Standards in a System of the Banking Services Quality Management. Business Ethics and Leadership, 2(3), 94-102. DOI: 10.21272/bel.2(3).94-102.2018
  12. Derzhavna sluzhba finansovoho monitorynhu Ukrayiny: ofitsiynyy veb sayt [State Financial Monitoring Service of Ukraine: official website]. Retrieved from: https://fiu.gov.ua/pages/dijalnist/funkcional/statistika-ta-infografika (date of application03.2021) [in Ukrainian]
  13. Derzhavni sluzhba statystyky Ukayiny: ofitsiyny veb sayt [State Statistics Service of Ukraine: official website]. Retrieved from: http://www.ukrstat.gov.ua/ (date of application 03.2021) [in Ukrainian]
  14. Djalilov, Kh., Ngoc Lam, T. (2019). Ownership, Risk and Efficiency in the Banking Sector of the ASEAN Countries. Financial Markets, Institutions and Risks, 3(2), 5-16. http://doi.org/10.21272/fmir.3(2).5-16.2019.
  15. Dmytrov, S., Medvid, T. (2017). An approach to the use of indices-based analysis subject to money laundering and terrorist financing national risk assessment SocioEconomic Challenges, 1(1), 35-47. http://doi.org/10.21272/sec.2017.1-04.
  16. Dobrowolski, Z. Sułkowski, Ł. (2020). Implementing a Sustainable Model for Anti-Money Laundering in the United Nations Development Goals. Sustainability, 12, 244. https://doi.org/10.3390/su12010244
  17. Dudchenko, V.Yu. (2020). Interaction of Central Bank Independence and Transparency: Bibliometric Analysis. Business Ethics and Leadership, 4(2), 109-115. https://doi.org/10.21272/bel.4(2).109-115.2020
  18. Fletcher E., Larkin C., & Corbet S. (2021). Countering money laundering and terrorist financing: A case for bitcoin regulation.Research in International Business and Finance, 56 doi:10.1016/j.ribaf.2021.101387.
  19. Gupta A., Dwivedi D. N., & Jain A. (2021). Threshold fine-tuning of money laundering scenarios through multi-dimensional optimization techniques.Journal of Money Laundering Control, doi:10.1108/JMLC-12-2020-0138.
  20. Hasan R., Rony M.N.H., & Ahmed R. (2021). In silico characterization and structural modeling of bacterial metalloprotease of family M4.Journal of Genetic Engineering and Biotechnology, 19(1) doi:10.1186/s43141-020-00105-y
  21. Hasan S., Ali M., Kurnia, S., & Thurasamy R. (2021). Evaluating the cyber security readiness of organizations and its influence on performance.Journal of Information Security and Applications, 58 doi:10.1016/j.jisa.2020.102726.
  22. Heneralʹna prokuratura Ukrayiny: ofitsiynyy veb sayt [Prosecutor General's Office of Ukraine: official website]. Retrieved from: https://www.gp.gov.ua/ua/1stat (date of application03.2021) [in Ukrainian]
  23. Karaoulanis, A. (2018). Big Data, What Is It, Its Limits and Implications in Contemporary Life. Business Ethics and Leadership, 2(4), 108-114. http://doi.org/10.21272/bel.2(4).108-114.2018
  24. Khrystyna Z., Kateryna P., Olha M., & Olena D. (2021). Strategic management of the innovative activity of the enterprise. Journal of Optimization in Industrial Engineering, 14(1), 119-127. doi:10.22094/JOIE.2020.677838.
  25. Kibaroğlu, O. (2020). Self Sovereign Digital Identity on the Blockchain: A Discourse Analysis. Financial Markets, Institutions and Risks, 4(2), 65-79. https://doi.org/10.21272/fmir.4(2).65-79.2020.
  26. Kuzmenko O., Vasylieva T., Vojtovič S., Chygryn O., & Snieška V. (2020). Why do regions differ in vulnerability to сovid-19? spatial nonlinear modeling of social and economic patterns.Economics and Sociology, 13(4), 318-340. doi:10.14254/2071-789X.2020/13-4/20
  27. Kuzmenko, O.V., Yarovenko, H.М., Boyko, А.О. & Mynenko, S.V. (2019). Rozrobka biznes-modelei protsesiv finansovoho monitorynhu ekonomichnykh ahentiv [Development of business models of financial monitoring processes of economic agents]. Efektyvna ekonomika, № 12. DOI: https://doi.org/10.32702/2307-2105-2019.12.4 [in Ukrainian]
  28. Lebid, O., Chmutova, I., Zuieva, O., & Veits, O. (2018). Risk assessment of the bank's involvement in legalization of questionable income considering the influence of fintech innovations implementation. Marketing and Management of Innovations, 2, 232-246. http://doi.org/10.21272/mmi.2018.2-19
  29. Levchenko, V., Boyko, A., Savchenko, T., Bozhenko, V., Humenna, Yu. & Pilin, R. (2019). State Regulation of the Economic Security by Applying the Innovative Approach to its Assessment. Marketing and Management of Innovations, 4, 364-372. http://doi.org/10.21272/mmi.2019.4-28
  30. Logan, W., Esmanov, O. (2017). Public financial services transparency. Business Ethics and Leadership, 1(2), 62-67. Doi: 10.21272/bel.1(2).62-67.2017
  31. Loossens T., Tuerlinckx F., & Verdonck S. (2021). A comparison of continuous and discrete time modeling of affective processes in terms of predictive accuracy.Scientific Reports, 11(1) doi:10.1038/s41598-021-85320-4.
  32. Lyeonov, S., Кuzmenko, О., Yarovenko, H. & Dotsenko, T. (2019). The Innovative Approach to Increasing Cybersecurity of Transactions Through Counteraction to Money Laundering. Marketing and Management of Innovations, 3, 308-326. http://doi.org/10.21272/mmi.2019.3-24
  33. Meng S., He X., & Tian X. (2021). Research on fintech development issues based on embedded cloud computing and big data analysis.Microprocessors and Microsystems, 83 doi:10.1016/j.micpro.2021.103977.
  34. Mobiny A., Yuan P., Moulik S. K., Garg N., Wu C. C., & Van Nguyen H. (2021). DropConnect is effective in modeling uncertainty of bayesian deep networks.Scientific Reports, 11(1) doi:10.1038/s41598-021-84854-xю
  35. Mynenko S.V., Kuzmenko O.V., Yarovenko H.M., Levchenko V.P. (2019) Avtomatyzatsiia protsesu finansovoho monitorynhu lehalizatsii koshtiv, otrymanykh nezakonnym shliakhom [Automation of the process of financial monitoring of legalization of illegally acquired money]. Naukovi zapysky Natsionalnoho universytetu «Ostrozka akademiia». Seriia «Ekonomika»: naukovyi zhurnal. №15(43). P. 162-171. https://eprints.oa.edu.ua/id/eprint/8069 [in Ukrainian]
  36. Peng X., Cheng L., & Gong M. (2021). Measuring public-involving economic crime: A case study in beijing, china.International Journal of Law, Crime and Justice, 65 doi:10.1016/j.ijlcj.2021.100465.
  37. Qarnain S. S., Muthuvel S., & Sankaranarayanan B. (2021). Analysis of energy conservation factors in buildings using interpretive structural modeling methodology: An indian perspective.Journal of the Institution of Engineers (India): Series A, 102(1), 43-61. doi:10.1007/s40030-020-00483-z.
  38. Razak M. I. A., Dali N. A. M., Dhillon G., & Manaf A. W. A. (2021). Fintech in malaysia: An appraisal to the need of shariah-compliant regulation.Pertanika Journal of Social Sciences and Humanities, 28(4), 3223-3233. doi:10.47836/PJSSH.28.4.40
  39. Rupietta C., Meuer J., & Backes-Gellner U. (2021). How do apprentices moderate the influence of organizational innovation on the technological innovation process? Empirical Research in Vocational Education and Training, 13(1) doi:10.1186/s40461-020-00107-7.
  40. Sarsembayev D. (2021). Monetary theory of the genesis of the state, prospects for electronic money and transnational law.International Journal of Criminology and Sociology, 10, 636-647. Retrieved from scopus.com.
  41. Soleimani H., Goudarzi T., & Aghdam M. M. (2021). Advanced structural modeling of a fold in Origami/Kirigami inspired structures.Thin-Walled Structures, 161 doi:10.1016/j.tws.2020.107406.
  42. Subeh, M. A., Boiko, A. (2017). Modeling efficiency of the State Financial Monitoring Service in the context of counteraction to money laundering and terrorism financing. SocioEconomic Challenges, 1(2), 39-51. http://doi.org/10.21272/sec.1(2).39-51.2017.
  43. Wang S. -. K., Hsieh M. -., Chang C. K. -., Jiang P. -., & Dallier D. J. (2021). Collaboration between law enforcement agencies in combating cybercrime: Implications of a taiwanese case study about ATM hacking.International Journal of Offender Therapy and Comparative Criminology, 65(4), 390-408. doi:10.1177/0306624X20952391.
  44. Yarovenko, H., Kuzmenko, O., Stumpo, M. (2020). Strategy for Determining Country Ranking by Level of Cybersecurity. Financial Markets, Institutions and Risks, 4(3), 124-137. https://doi.org/10.21272/fmir.4(3).124-137.2020
  45. Young, M. A., & Woodiwiss, M. (2021). A world fit for money laundering: The atlantic alliance’s undermining of organized crime control.Trends in Organized Crime, 24(1), 70-95. doi:10.1007/s12117-020-09386-8.
  46. Zarutska, E., Pavlova, T., & Sinyuk, A. (2018). Structural-functional analysis as innovation in public governance (case of banking supervision). Marketing and Management of Innovations, 4, 349-360. http://doi.org/10.21272/mmi.2018.4-30