DEBTOR RATING AS A TOOL OF DEBT MANAGEMENT

Hanus I.

Sumy State University,
Sumy, Ukraine

Plikus I.

Sumy State University,
Sumy, Ukraine

Zhukova T.

Sumy State University,
Sumy, Ukraine


Pages: 121-129


Original language: Ukrainian

DOI: 10.21272/1817-9215.2020.3-13

Summary:

IFRS 9 “Financial Instruments” introduced a new model of impairment based on expected credit losses, in which the impairment is based on expected credit losses, and the provision for losses is recognized before the credit loss, i.e. companies recognize losses immediately after initial recognition of the financial asset and revise the amount of the provision for expected credit losses at the reporting date. To create a provision for credit losses, IFRS 9 allows using several practical tools, including the rating debtors’ method. However, IFRS 9 does not express a clear opinion on how the expected credit loss for receivables should be calculated. In this regard, in our opinion, it is possible to apply an individual approach to the choice of credit risk assessment method, determining the debtor’s credit rating and the choice of the default probability, and so on. The paper substantiates that the debtors’ rating by the level of corporate default risk is a method that can reliably assess the probable risks. This method uses credit ratings. The paper proposes using the international credit ratings, which will allow a more objective creditworthiness assessment of both foreign and domestic debtors, taking into account macroeconomic factors used by rating agencies to determine the class of credit risk. The article presents the credit rating of Ukraine and changes in the credit rating of Ukraine for 15 years (2004-2019), shows the model of applying the international default probability rates. Two variants of applying this model are offered. Under the first option, the total amount of receivables from the counterparty / group of debtors is multiplied by the percentage of default probability. The second option involves applying the selected ratio according to the credit rating class at the last stage of calculating the expected credit losses by the simplified method. Due to the fact that there is no single approach to choosing the probability of default and everything relies on expert opinion, we propose using the data of the Annual Global Corporate Default And Rating, which is an analysis of market conditions in the world, the corporate defaults overview, the coefficient of bankruptcy probability of economic entities for each of the risk groups. The paper proposes using the annual rate of corporate defaults, as the expected credit losses must be calculated by companies on a regular basis and revalued at least once a year (on the balance sheet date). It is substantiated that the use of the average rate (Average Rate) to assess the probability of default, it is this rate that takes into account the past experience of companies that are in the corresponding zone of default risk for all the periods under consideration.

Keywords:
expected credit losses, expected loss ratio, receivables rating, loan loss reserve.

Reference:
  1. Чунихина Т. Калибровка ставок дефолта в целях оценки ожидаемых кредитных убытков по финансовым активам согласно МСФО (IFRS) 9 / Т. Чунихина // Банкаўскі веснік. - - С.49-60.
  2. Бирхаум Д. Учет убытков от обесценения COVID-19: текущие ожидаемые кредитные убытки (CECL) по сравнению с МСФО (IFRS) 9 «Ожидаемые кредитные убытки (ECL). / Д.Бирхаум // Journal of Applied Research in the Digital Economy (JADE).. – 2020. - Special Issue on COVID-19.
  3. Volarević H.Internal model for IFRS 9 - Expected credit losses calculation / Volarević H., Varović M. // Ekonomski pregled. – 2018. - № 69 (3). - 269-297.
  4. Gornjak Literature Review of IFRS 9 and Its Key Parameters // Expanding HorizonsBusiness, Management and Technology for Better Society20–22 May 2020. Online Conference Management,Knowledge and Learning International Conference 2020 - Available from: https://www.researchgate.net/publication/342354555_Literature_Review_of_IFRS_9_and_Its_Key_Parameters
  5. Bholat D. Non-performing loans at the dawn of IFRS 9: Regulatory and accounting treatment of asset quality / Bholat D., Lastra R. M., Markose S. M., Miglionico A., Sen K. //Journal of Banking Regulation. - 2018. - 19(1). - 33–54. https://doi.org/10.1057/s41261-017-0058-8
  6. Cefis L. A. Testing for Convexity Relevance: An IFRS 9 Benchmark Cashflow Test Proposal. / Cefis, L. A. //SSRN Electronic Journal. – 2018 - https://doi.org/10.2139/ssrn.2969122  .
  7. Đurović A. Macroeconomic Approach to Point in Time Probability of Default Modeling – IFRS 9 Challenges. / Đurović A. //Journal of Central Banking Theory and Practice. – 2019. - 8(1). – Р.209–223.- https://doi.org/10.2478/jcbtp-2019-0010
  8. Gulyás É. Experiences Relating to the Introduction of IFRS 9 In the Banking Sector / Gulyás É., Somogyi C. // Economy & Finance. – 2019. № 6(3). Р.266–295. - https://doi.org/10.33908/EF.2019.3.3
  9. Vaněk T. The Probability of Default Under IFRS 9: Multi-period Estimation and Macroeconomic Forecast. / Vaněk T., Hampel D. // Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2017. - 65(2). Р.759–776. -https://doi.org/10.11118/actaun201765020759
  10. A Roadmap for Convergence between IFRSs and US GAAP 2006 -2008 [Електронний ресурс] // Memorandum of Understanding between the FASB and the IASB. – 27 February 2006. – Режим доступу: http://www.fasb.org/cs/BlobServer?blobkey=id&blobwhere=1175819018800&blobheader=application%2Fpdf&blobcol=urldata&blobtable=MungoBlobs
  11. Hoogervorst H. IASB-FASB Update Report to the FSB Plenary on Accounting Convergence [Електронний ресурс] / Hoogervorst H., Seidman L. – 5 April 2012. – Режим доступу: http://www.fasb.org/cs/BlobServer?blobkey= id&blobwhere=1175823897791&blobheader=application%2Fpdf&blobcol=urldata&blobtable=MungoBlobs
  12. IFRS 9 Financial Instruments / The IFRS Foundation / International Accounting Standards Board. – Режим доступу: https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/#about
  13. Плікус І. Імплементація МСФЗ 9 «Фінансові інструменти» в систему обліку дебіторської заборговіаності / І. Плікус, І. Ганус, А. Гордєєва// Інфраструктура ринку. – Вип.37.
  14. Annual Global Corporate Default & Rating Transition 2018 [Електронний ресурс] / S&F Global. – Режим доступу: https://www.spglobal.com/en/research-insights/articles/what-is-the-g-in-esg