GEOSPATIAL, FINANCIAL, HUMAN, AND TEMPORAL FACTORS IN THE STUDY OF THE DEVELOPMENT OF RENEWABLE ENERGY AND SMART GRIDS

Matvieieva Y.

Sumy State University,
Sumy, Ukraine

Myroshnychenko I.

Sumy State University,
Sumy, Ukraine

Kolosok S.

Sumy State University,
Sumy, Ukraine

Kotyuk R.

Sumy State University,
Sumy, Ukraine


Pages: 84-96


Original language: Ukrainian

DOI: 10.21272/1817-9215.2020.3-9

Summary:

Balanced development of smart grids is becoming an increasingly important issue for the energy sector's successful operation. This article provides a bibliographic review of publications in the study of renewable energy and smart grids' deployment parameters. A sample of works for 2009-2020 from the Scopus® database, which contains bibliographic information about scientific publications in peer-reviewed journals, books, and conferences, was selected for analysis.

The authors identified three clusters of research areas using VOSviewer (version 1.6.15) in the context of the impact of geospatial parameters on smart grids' development. The first cluster consists of the financial, human, and temporal components of the geospatial factor of smart grid deployment. The authors found the largest number of links in the first cluster in terms of "costs" (a total of 29 links with an average impact of 9). The second cluster coincides with concepts related to geospatial information systems (GIS), digital storage, information systems, and cartographic information use. Research on renewable energy also belongs to the second cluster of publications. And the third cluster highlights all the concepts of smart grids by their technical types and in the context of optimization. The third cluster focuses on the ideas with the strongest link power.

The results of the analysis of the Scopus® database allowed to determine the level and dynamics of scientific interest in the geospatial factors of the development of smart grids over the past 10 years.

It is established that research in the field of geospatial factors of smart grid development is carried out by different countries, but the most active analysis of the impact of geospatial parameters on the development of smart grids in the following countries: USA, Canada and China.

Based on the use of the Scopus® database, the article identified institutions and organizations that fund the study of geospatial factors and smart grids and made a significant contribution to the development of this topic.

Keywords:
development of smart grids, clusters of smart grids, geospatial factors, renewable energy.

Reference:
  1. Rahman, A., Liu, X., & Kong, F. (2014). A survey on geographic load balancing based data center power management in the smart grid environment. IEEE Communications Surveys and Tutorials, 16(1), 214-233. doi:10.1109/SURV.2013.070813.00183.
  2. Matvieieva, Yu.T., Kolosok, S.I., & Vakulenko, I.A. (2019). The analysis of foreign experience to implementation energy efficiency on the basis of smart grid model. Efektyvna ekonomika, 4. DOI: 10.32702/2307-2105-2019.4.36.
  3. Vakulenko, I., Kolosok, S., Pryimenko, S., & Matvieieva, Yu. (2019). Formation basis of energy reform with “smart” technologies. Visnyk of Sumy State University. Economy series, 3, 40-45. DOI: 10.21272/1817-9215.2019.3-5.
  4. Mirowski, P., Chen, S., Kam Ho, T., & Yu, C. (2014). Demand forecasting in smart grids. Bell Labs Technical Journal, 18(4), 135-158. doi:10.1002/bltj.21650.
  5. Vakulenko, I., & Kolosok, S. (2019). Typologization of “smart” environmental energy solutions adapted to peculiarities of domestic energy networks. Visnyk of Sumy State University. Economy series, 2, 21-25. DOI: 10.21272/1817-9215.2019.2-3.
  6. Vakulenko, I. , Kolosok, S., & Pryimenko, S. (2019). Approaches to the deployment of smart energy networks. Visnyk of Sumy State University. Economy series, 4, 56-61. DOI: 10.21272/1817-9215.2019.4-7.
  7. Priyadarshana, H. V. V., Sandaru, M. A. K., Hemapala, K. T. M. U., & Wijayapala, W. D. A. S. (2019). A review on multi-agent system based energy management systems for micro grids. AIMS Energy, 7(6) doi:10.3934/ENERGY.2019.6.924.
  8. Matvieieva, Yu. (2020). Methodical approach to the optimization modeling the smart grids development considering the financial, resource, geospatial and time parameters. In M. Bezpartochnyi (Ed.), New trends in the economic systems management in the context of modern global challenges : collective monograph (pp. 17–43). Vol. 2. Sofia: VUZF Publishing House “St. Grigorii Bogoslov”.
  9. Vakulenko, I., & Kolosok, S. (2019). Connections smart grids concept with updates of Ukrainian heart power. Visnyk of Sumy State University. Economy series, 1, 14-18. DOI: 10.21272/1817-9215.2019.1-2.
  10. Yevdokymova, A., Kolosok, S., & Petrenko, N. (2019). European and Ukrainian implementation experience energy technologies. Visnyk of Sumy State University. Economy series, 4, 109-114. DOI: 10.21272/1817-9215.2019.4-14.
  11. Moskalchuk, N. M., & Adamenko, Y. O. (2019). The wind farm site selection on GIS-based approach. Scientific Bulletin of UNFU, 29(6), 71-75. DOI: 10.15421/40290614.
  12. Agapova, O. et al. (2018). Research of the Spatial Aspects of Using Renewable Energy Sources for Sustainable Development of the Territory. Technology Audit and Production Reserves, 6 (1), 50-58. doi:10.15587/2312-8372.2018.149595.
  13. Розвиток відновлюваних джерел енергії в Україні. 2017. URL: https://www.minregion.gov.ua/wp-content/uploads/2017/03/Rozvitok-VDE-v-Ukrai--ni.pdf.
  14. Гуменюк, О., & Новак, І. (2020). Дослідження створення робочих місць у сферах енергоефективності та відновлюваної енергетики в Україні. URL: http://reform.energy/media/1463/b46d83bca4c4d68ed98f1807262d702c.pdf.
  15. Новак, І. М. (2020). «Альтернативна» зайнятість. Чи встигає ринок кадрів за змінами в секторі енергетики. URL: //www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=6831.
  16. Тормосова, Р.Ю.  Романюк, О.П., & Сафіуліної, К.Р. (Eds.). (2015). Підготовка проектних пропозицій із чистої енергії. Поліграф плюс.
  17. Moroz, O.M. et al. (2017). Using smart grid’s technologies for increasing efficiency of consumers’ electric supply. Energy: economics, technology, ecology, 3, 82-86. DOI: 10.20535/1813-5420.3.2017.117369.
  18. Кільницький, О. (2018). Енергетичні тренди: в які проекти варто інвестувати кошти. URL: https://mind.ua/publications/20190743-energetichni-trendi-v-yaki-proekti-varto-investuvati-koshti.
  19. Горба, О.О., Чайка, Т.О., & Яснолоб, І.О. (Eds.). (2017). Розробка та вдосконалення енергетичних систем з урахуванням наявного потенціалу альтернативних джерел енергії. Укрпромторгсервіс.
  20. Кириленко, О.В. (Ed.). (2016). Інтелектуальні електричні мережі: елементи та режими. Інститут електродинаміки НАН України.
  21. Лежнюк, П. Д., Рубаненко, О. Є., & Гунько, І. О. (2018). Оптимізація режимів електричних мереж з відновлюваними джерелами електроенергії. ВНТУ.
  22. Kuzmina, M. M. (2019). Legal regulation of innovative development in the sphere of renewable energy. Law and Innovations, 1 (17), 14-19. URL: http://pti.org.ua/index.php/ndipzir/article/view/227/175.
  23. Bolkvadze, N. I., & Syvak, R. B. (2018). The investment priorities of global investors in the energy sphere. Business Inform, 11, 107-113. URL: https://www.business-inform.net/export_pdf/business-inform-2018-11_0-pages-107_113.pdf.
  24. Zatserkovnyi, V., Oberemok, N., & Puzik, A. (2018). Geoinformation modeling in the problems of renewable energy. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology, 9, 118-127. DOI: 10.20998/2413-4295.2018.09.17.
  25. Kotsar, O. (2018). Smart systems for measuring, metering and energy management. Energy: economics, technology, ecology, 2, 20-25. DOI: 10.20535/1813-5420.2.2018.147334.
  26. Yelisyeva, О. К., Hilorme, T. V., & Vodopyan, M. V. (2016). Analysis and perspectives of energy platform development based on the principles of smart grid concept in Ukraine. Bulletin of Khmelnytsky National University. Economy series, 5, 70–74.
  27. Vakulenko, I., & Myroshnychenko, Iu. (2015). Approaches to the organization of the energy efficient activity at the regional level in the context of limited budget resources during the transformation of energy market paradigm. Environmental and Climate Technologies, 15 (1), 59-76. URL: https://dx.doi.org/10.1515/rtuect-2015-0006.
  28. Теліженко, О.М.,  & Сотник, М.І. (Eds.). (2018). Управління енергоспоживанням: промисловість і соціальна сфера. Mriia-1.
  29. Габрінець В. О. та ін. (2016). Формування схемних рішень системи акліматизації споруд в робочому середовищі альтернативних джерел енергії. АКЦЕНТ ПП.
  30. Офіс з фінансового та економічного аналізу у Верховній Раді України. (2017). Зарубіжний досвід стимулювання відновлювальних джерел енергетики (досвід Німеччини та Австрії). URL: http://kompek.rada.gov.ua/uploads/documents/29892.pdf.
  31. Стаднік М.І. та ін. (2020). Інтелектуальні системи в електроенергетиці. Теорія та практика. Твори.
  32. Biagi, M., Greco, S., & Lampe, L. (2018). Geo-routing algorithms and protocols for power line communications in smart grids. IEEE Transactions on Smart Grid, 9(2), 1472-1481. doi:10.1109/TSG.2016.2593490.
  33. Ganán, C., Inga, E., & Hincapié, R. (2017). Optimal deployment and routing geographic of UDAP for advanced metering infrastructure based on MST algorithm. [Óptimo despliegue y enrutamiento de UDAP para infraestructurade medición avanzada basada en el algoritmo MST] Ingeniare, 25(1), 106-115. doi:10.4067/S0718-33052017000100106.
  34. Hoefling, M., Mills, C. G., & Menth, M. (2017). Distributed load balancing for the resilient Publish/Subscribe overlay in SeDAX. IEEE Transactions on Network and Service Management, 14(1), 147-160. doi:10.1109/TNSM.2016.2647678.
  35. Hu, H., Wen, Y., Yin, L., Qiu, L., & Niyato, D. (2020). Coordinating workload scheduling of geo-distributed data centers and electricity generation of smart grid. IEEE Transactions on Services Computing, 13(6), 1007-1020. doi:10.1109/TSC.2017.2773617.
  36. Inga, E., Carrion, D., Aguila, A., Garcia, E., Hincapie, R., & González, J. W. (2016). Minimal deployment and routing geographic of PMUs on electrical power system based on MST algorithm. IEEE Latin America Transactions, 14(5), 2264-2270. doi:10.1109/TLA.2016.7530422.
  37. Korkovelos, A., Mentis, D., Bazilian, M., Howells, M., Saraj, A., Hotaki, S. F., & Missfeldt-Ringius, F. (2020). Supporting electrification policy in fragile states: A conflict-adjusted geospatial least cost approach for afghanistan. Sustainability (Switzerland), 12(3). doi:10.3390/su12030777.
  38. Pham, C., Tran, N. H., Ren, S., Seon Hong, C., Nguyen, K. K., & Cheriet, M. (2018). A distributed approach to emergency demand response in geo-distributed mixed-use buildings. Journal of Building Engineering, 19, 506-518. doi:10.1016/j.jobe.2018.06.004.
  39. Renugadevi, T., Geetha, K., Muthukumar, K., & Geem, Z. W. (2020). Optimized energy cost and carbon emission-aware virtual machine allocation in sustainable data centers. Sustainability (Switzerland), 12(16). doi:10.3390/SU12166383.
  40. Tran, N. H., Tran, D. H., Ren, S., Han, Z., Huh, E. -., & Hong, C. S. (2016). How geo-distributed data centers do demand response: A game-theoretic approach. IEEE Transactions on Smart Grid, 7(2), 937-947. doi:10.1109/TSG.2015.2421286.
  41. Xiang, M., Bai, Q., & Liu, W. (2014). Trust-based adaptive routing for smart grid systems. Journal of Information Processing, 22(2), 210-218. doi:10.2197/ipsjjip.22.210.
  42. Xiang, M., Liu, W., & Bai, Q. (2016). A fuzzy logic-based sustainable and trusted routing for P2P enabled smart grid. International Journal of Computational Science and Engineering, 13(2), 165-174. doi:10.1504/IJCSE.2016.078445.
  43. Xie, S., Wang, H., Wang, S., Lu, H., Hong, Y., Jin, D., & Liu, Q. (2019). Discovering communities for microgrids with spatial-temporal net energy. Journal of Modern Power Systems and Clean Energy, 7(6), 1536-1546. doi:10.1007/s40565-019-0543-4.
  44. Yu, L., Jiang, T., Zou, Y., & Sun, Z. (2016). Joint energy management strategy for geo-distributed data centers and electric vehicles in smart grid environment. IEEE Transactions on Smart Grid, 7(5), 2378-2392. doi:10.1109/TSG.2016.254226.
  45. Zhou, Z., Liu, F., Chen, S., & Li, Z. (2020). A truthful and efficient incentive mechanism for demand response in green datacenters. IEEE Transactions on Parallel and Distributed Systems, 31(1), 1-15. doi:10.1109/TPDS.2018.2882174.
  46. Zhou, Z., Liu, F., & Li, Z. (2016). Bilateral electricity trade between smart grids and green datacenters: Pricing models and performance evaluation. IEEE Journal on Selected Areas in Communications, 34(12), 3993-4007. doi:10.1109/JSAC.2016.2611898.